6 Line Segments and Rays

(6.1) Definition (line segment $\overline{A B}$)

If A and B are distinct points in a metric geometry $\{\mathcal{S}, \mathcal{L}, d\}$ then the line segment from A to B is the set $\overline{A B}=\{M \in \mathcal{S} \mid A-M-B$ or $M=A$ or $M=B\}$.

1. Let $A(-1 / 2, \sqrt{3} / 2)$ and $B(\sqrt{19} / 10,1 / 10)$ denote given points of line ${ }_{0} L_{1}$. Give a graphical sketch for line segment $\overline{A B}$.
2. Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ denote three points which belong to the type II line ${ }_{c} L_{r}$
in the Poincaré Plane. If $x_{1}<x_{3}<x_{2}$ show that then $C \in \overline{A B}$.
3. Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ lie on the type II line ${ }_{c} L_{r}$ in the Poincaré Plane. If $x_{1}<x_{2}$ show that $\overline{A B}=\left\{C=(x, y) \in{ }_{c} L_{r} \mid x_{1} \leq x \leq x_{2}\right\}$.

(6.2) Definition

Let \mathcal{A} be a subset of a metric geometry. A point $B \in \mathcal{A}$ is a passing point of \mathcal{A} if there exists points $X, Y \in \mathcal{A}$ with $X-B-Y$. Otherwise B is an extreme point of \mathcal{A}.
4. Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ denote two points in metric geometry, and let $C \in \overline{A B}$. If $C \neq A$ and $C \neq B$ explain is point C passing point or extreme point of $\overline{A B}$.

(6.3) Theorem

If A and B are two points in a metric geometry then the only extreme points of the
segment $\overline{A B}$ are A and B themselves. In particular, if $\overline{A B}=\overline{C D}$ then $\{A, B\}=\{C, D\}$.
(6.4) Definition (end points, length of the segment $\overline{A B}$)

The end points (or vertices) of the segment $\overline{A B}$ are A and B. The length of the segment $\overline{A B}$ is $A B=d(A, B)$.
(6.5) Definition (ray $p p[A, B)=\overrightarrow{A B}$)

If A and B are distinct points in a metric geometry $\{\mathcal{S}, \mathcal{L}, d\}$ then the ray from A toward B is the set

$$
p p[A, B)=\overrightarrow{A B}=\overline{A B} \cup\{C \in \mathcal{S} \mid A-B-C\}
$$

(6.6) Theorem

In a metric geometry (i) if $C \in \overrightarrow{A B}$ and $C \neq A$, then $\overrightarrow{A C}=\overrightarrow{A B}$; (ii) if $\overrightarrow{A B}=\overrightarrow{C D}$ then $A=C$.

(6.7) Definition (vertex of the ray)

The vertex (or initial point) of the ray $p p[A, B)=\overrightarrow{A B}$ is the point A.

(6.8) Theorem

If A and B are distinct points in a metric geometry then there is a ruler $f: \overleftrightarrow{A B} \rightarrow \mathbb{R}$ such that $p p[A, B)=\overrightarrow{A B}=\{X \in \overleftrightarrow{A B} \mid f(X) \geq 0\}$

(6.9) Definition $(\overline{A B} \cong \overline{C D})$

Two line segments $\overline{A B}$ and $\overline{C D}$ in a metric geometry are congruent (written $\overline{A B} \cong \overline{C D}$) if their lengths are equal; that is $\overline{A B} \cong \overline{C D}$ if $A B=C D$.

(6.10) Theorem (Segment Construction)

If $\overrightarrow{A B}$ is a ray and $\overline{P Q}$ is a line segment in a metric geometry, then there is a unique point $C \in \overrightarrow{A B}$ with $\overline{P Q} \cong \overline{A C}$.
5. Prove Theorems 6.3, 6.6, 6.8 and 6.10.
6. In the Poincaré Plane let $A(0,2), B(0,1)$,
$P(0,4), Q(7,3)$. Find $C \in \overrightarrow{A B}$ so that $\overline{A C} \cong \overline{P Q}$.
7. Let A and B be distinct points in a metric geometry. Then $M \in \overleftrightarrow{A B}$ is a midpoint of the line segment $\overline{A B}$ if and only if $A M=M B$.
(Remember that here $\underline{A M}$ means $d(A, M)$.) (a) If M is a midpoint of $\overline{A B}$, prove that $A-M-B$. (b) Show that $\overline{A B}$ has a midpoint M, and that M is unique. (c) Let $A(0,9)$ and $B(0,1)$. Find the midpoint of $\overline{A B}$ where A and B are points of (i) the Euclidean plane; (ii) the Hyperbolic plane.
8. Determine are the statements true or false: determined by its distances from A and B.
(a) $\overline{A B}=\overline{C D}$ only if $A=C$ or $A=D$. (b) If $A B=C D$ then $A=C$ or $A=D$. (c) If $\overline{A B} \cong \overline{C D}$, then $\{A, B\}=\{C, D\}$. (d) If $\overline{A B} \cong \overline{C D}$, then $\overline{A B}=\overline{C D}$. (e) A point on $\overleftrightarrow{A B}$ is uniquely
9. In a metric geometry $(\mathcal{S}, \mathcal{L}, d)$, prove that if $A-B-C, P-Q-R, \overline{A B} \cong \overline{P Q}, \overline{A C} \cong \overline{P R}$, then $\overline{B C} \cong \overline{Q R}$.

7 Angles and Triangles

It is important to note that an angle is a set, not a number like 45°. We will view numbers as properties of angles when we define angle measure in section: "The Measure of an Angle".

(7.1) Definition (angle $\measuredangle A B C$)

If A, B and C are noncollinear points in a metric geometry then the angle $\measuredangle A B C$ is the set

$$
\measuredangle A B C=\overrightarrow{B A} \cup \overrightarrow{B C}=p p[B, A) \cup p p[B, C) .
$$

1. Show that B is not a passing point of $\measuredangle A B C$.

(7.2) Lemma

In a metric geometry, B is the only extreme point of $\measuredangle A B C$.
(7.3) Theorem $(\measuredangle A B C=\measuredangle D E F \Rightarrow B=E)$

In a metric geometry, if $\measuredangle A B C=\measuredangle D E F$ then $B=E$.
2. Prove Lemma 7.2 and Theorem 7.3.
(7.4) Definition (vertex of the angle $\measuredangle A B C$)

The vertex of the angle $\measuredangle A B C$ in a metric geometry is the point B.

(7.5) Definition (triangle $\triangle A B C$)

If $\{A, B, C\}$ are noncollinear points in a metric geometry then the triangle $\triangle A B C$ is the set

$$
\triangle A B C=\overline{A B} \cup \overline{B C} \cup \overline{C A} .
$$

(7.6) Lemma

In a metric geometry, if A, B, and C are not collinear then A is an extreme point of $\triangle A B C$.
(7.7) Theorem

In a metric geometry, if $\triangle A B C=\triangle D E F$ then $\{A, B, C\}=\{D, E, F\}$.
3. Prove Lemma 7.6 and Theorem 7.7.

(7.8) Definition (vertices, sides)

In a metric geometry the vertices of $\triangle A B C$ are the points A, B, C. The sides (or edges) of $\triangle A B C$ are $\overline{A B}, \overline{B C}$ and $\overline{C A}$.
4. Prove that $\measuredangle A B C=\measuredangle C B A$ in a metric
geometry.
In next three problems do not use Lemma 7.6 and Theorem 7.7.
5. Let D, E and F be three noncollinear points of a metric geometry and let ℓ be a line that contains at most one of D, E and F. Prove that each of $\overleftrightarrow{D E}, \overleftrightarrow{D F}$ and $\overleftrightarrow{E F}$ intersects ℓ in at most one point.
6. Prove that if $\triangle A B C=\triangle D E F$ in a metric geometry then $\overleftrightarrow{A B}$ contains exactly two of the points D, E and F.
7. In a metric geometry, prove that if A, B and C are not collinear then $\overline{A B}=\overleftrightarrow{A B} \cap \triangle A B C$

