Line Segments and Rays 6

(6.1) Definition (line segment AB)

If A and B are distinct points in a metric geometry $\{S, \mathcal{L}, d\}$ then the line segment from A to B is the set $\overline{AB} = \{M \in \mathcal{S} \mid A - M - B \text{ or } M = A \text{ or } M = B\}.$

- **1.** Let $A(-1/2, \sqrt{3}/2)$ and $B(\sqrt{19}/10, 1/10)$ denote given points of line ${}_{0}L_{1}$. Give a graphical sketch for line segment AB.
- **2.** Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ denote three points which belong to the type II line $_{c}L_{r}$

in the Poincaré Plane. If $x_1 < x_3 < x_2$ show that then $C \in AB$.

3. Let $A(x_1, y_1)$ and $B(x_2, y_2)$ lie on the type II line $_cL_r$ in the Poincaré Plane. If $x_1 < x_2$ show that $\overline{AB} = \{C = (x, y) \in {}_{c}L_{r} \mid x_{1} \leq x \leq x_{2}\}.$

(6.2) Definition

Let \mathcal{A} be a subset of a metric geometry. A point $B \in \mathcal{A}$ is a passing point of \mathcal{A} if there exists points $X, Y \in \mathcal{A}$ with X - B - Y. Otherwise B is an extreme point of \mathcal{A} .

4. Let $A(x_1, y_1)$ and $B(x_2, y_2)$ denote two points segment \overline{AB} are A and B themselves. In in metric geometry, and let $C \in \overline{AB}$. If $C \neq A$ and $C \neq B$ explain is point C passing point or extreme point of AB.

particular, if $\overline{AB} = \overline{CD}$ then $\{A, B\} = \{C, D\}$.

(6.3) Theorem

If A and B are two points in a metric geometry then the only extreme points of the

(6.4) Definition (end points, length of the segment AB)

The end points (or vertices) of the segment AB are A and B. The length of the segment ABis AB = d(A, B).

(6.5) Definition (ray $pp[A, B) = \overrightarrow{AB}$)

If A and B are distinct points in a metric geometry $\{S, \mathcal{L}, d\}$ then the ray from A toward B is the set

$$pp[A,B) = \overrightarrow{AB} = \overline{AB} \cup \{C \in \mathcal{S} \mid A-B-C\}.$$

(6.6) Theorem

In a metric geometry (i) if $C \in \overrightarrow{AB}$ and $C \neq A$, then $\overrightarrow{AC} = \overrightarrow{AB}$; (ii) if $\overrightarrow{AB} = \overrightarrow{CD}$ then A = C.

(6.10) Theorem (Segment Construction)

If \overrightarrow{AB} is a ray and \overrightarrow{PQ} is a line segment in a metric geometry, then there is a unique point $C \in \overrightarrow{AB}$ with $\overrightarrow{PO} \cong \overrightarrow{AC}$.

(6.7) Definition (vertex of the ray)

The vertex (or initial point) of the ray $pp[A,B) = \overrightarrow{AB}$ is the point A.

- **5.** Prove Theorems 6.3, 6.6, 6.8 and 6.10.
- **6.** In the Poincaré Plane let A(0,2), B(0,1), P(0,4), Q(7,3). Find $C \in \overrightarrow{AB}$ so that $\overline{AC} \cong \overline{PQ}$.

7. Let A and B be distinct points in a metric geometry. Then $M \in \overrightarrow{AB}$ is a midpoint of the line segment \overline{AB} if and only if $\overline{AM} = \overline{MB}$. (Remember that here AM means d(A, M).) (a) If M is a midpoint of AB, prove that A - M - B. (b) Show that AB has a midpoint M, and that M is unique. (c) Let A(0,9) and B(0,1). Find the midpoint of AB where A and B are points of (i) the Euclidean plane; (ii) the Hyperbolic plane.

(6.8) Theorem

If A and B are distinct points in a metric geometry then there is a ruler $f: \overrightarrow{AB} \to \mathbb{R}$ such that $pp[A,B) = \overrightarrow{AB} = \{X \in \overrightarrow{AB} \mid f(X) \ge 0\}$

(6.9) **Definition** $(AB \cong CD)$

Two line segments \overline{AB} and \overline{CD} in a metric geometry are congruent (written $\overline{AB} \cong \overline{CD}$) if their lengths are equal; that is $AB \cong CD$ if AB = CD.

8. Determine are the statements true or false: (a) $\overline{AB} = \overline{CD}$ only if A = C or A = D. (b) If AB = CD then A = C or A = D. (c) If $\overline{AB} \cong \overline{CD}$, then $\overline{AB} = \overline{CD}$. (d) If $\overline{AB} \cong \overline{CD}$, then $\overline{AB} = \overline{CD}$. (e) A point on \overline{AB} is uniquely

determined by its distances from A and B.

9. In a metric geometry $(S, \mathcal{L}, \underline{d})$, prove that if $\underline{A-B-C}$, P-Q-R, $\overline{AB} \cong \overline{PQ}$, $\overline{AC} \cong \overline{PR}$, then $\overline{BC} \cong \overline{QR}$.

7 Angles and Triangles

It is important to note that an angle is a set, not a number like 45°. We will view numbers as properties of angles when we define angle measure in section: "The Measure of an Angle".

(7.1) Definition (angle $\angle ABC$)

If A, B and C are noncollinear points in a metric geometry then the angle $\angle ABC$ is the set

$$\angle ABC = \overrightarrow{BA} \cup \overrightarrow{BC} = pp[B,A) \cup pp[B,C).$$

1. Show that B is not a passing point of $\angle ABC$.

In a metric geometry, if $\angle ABC = \angle DEF$ then B = E.

(7.2) Lemma

In a metric geometry, B is the only extreme point of $\angle ABC$.

(7.3) Theorem ($\angle ABC = \angle DEF \Rightarrow B = E$)

2. Prove Lemma 7.2 and Theorem 7.3.

(7.4) Definition (vertex of the angle $\angle ABC$)

The vertex of the angle $\angle ABC$ in a metric geometry is the point B.

(7.5) Definition (triangle $\triangle ABC$)

If $\{A,B,C\}$ are noncollinear points in a metric geometry then the triangle $\triangle ABC$ is the set

$$\triangle ABC = \overline{AB} \cup \overline{BC} \cup \overline{CA}.$$

(7.6) Lemma

In a metric geometry, if A, B, and C are not collinear then A is an extreme point of $\triangle ABC$.

(7.7) Theorem

In a metric geometry, if $\triangle ABC = \triangle DEF$ then $\{A, B, C\} = \{D, E, F\}.$

3. Prove Lemma 7.6 and Theorem 7.7.

(7.8) Definition (vertices, sides)

In a metric geometry the vertices of $\triangle ABC$ are the points A, B, C. The sides (or edges) of $\triangle ABC$ are \overline{AB} , \overline{BC} and \overline{CA} .

4. Prove that $\angle ABC = \angle CBA$ in a metric

geometry.

In next three problems do not use Lemma 7.6 and Theorem 7.7.

- **5.** Let D, E and F be three noncollinear points of a metric geometry and let ℓ be a line that contains at most one of D, E and F. Prove that each of \overrightarrow{DE} , \overrightarrow{DF} and \overrightarrow{EF} intersects ℓ in at most one point.
- **6.** Prove that if $\triangle ABC = \triangle DEF$ in a metric geometry then \overrightarrow{AB} contains exactly two of the points D, E and F.
- **7.** In a metric geometry, prove that if A, B and C are not collinear then $\overline{AB} = \overleftrightarrow{AB} \cap \triangle ABC$.